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COMMENT 
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Abstract. We study a special case of the Hubbard model in which the on-site interaction 
U is infinite and there is exactly one hole. Nagaoka has shown that the ground state in 
this case has the maximum total spin. In this comment, we give Nagaoka’s theorem another 
proof which is simpler, in some respects, than the original one. 

It is well known that the Hubbard model plays a very important role in the study of 
metallic ferromagnetism, the metal-insulator transition and high temperature supercon- 
ductivity. It is a relatively simple model but there are unfortunately few rigorous 
results known [ 1-41. Nagaoka’s theorem is one of them. In Nagaoka’s original paper 
[ 11, he considered a special case of the Hubbard model, in which the on-site interaction 
is infinite and there is exactly one hole, and showed that the unique ground state has 
the maximum total spin. Considering the fact that the state with S,,, can never be 
the ground state when the band is half filled [4], the result of Nagaoka’s theorem is 
surely very interesting. 

In this comment, we shall give Nagaoka’s theorem another proof. It is simpler 
than the original one in some respects. 

For the reader’s convenience, let us first recall Nagaoka’s theorem. The Hamiltonian 
of the Hubbard model can be written as 

where c: and ci, are, respectively, creation and annihilation operators for an electron 
of spin U at the ith lattice site; U is the on-site Coulomb repulsion interaction parameter 
which is positive; ti, is the hopping matrix element defined by 

if site i and j are nearest neighbours 
otherwise. 

Letting U be infinite, there can be at most one electron at each site. Let N be the 
total number of lattice sites and Ne the total number of electrons. Then it is necessary 
that N 3 N e .  Nagaoka studied a special case in which N - Ne = 1. He showed the 
following. 

Theorem. If the crystal structure is simple cubic (sc),  body centred cubic (BCC), face 
centred cubic (FCC), or hexagonal closed packed (HCP)  and the parameter t > 0, then 
the ground state has the maximum total spin S,,, = f N e .  
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Remark 1 .  It is worthwhile noticing that sc and BCC can be divided into two sublattices 
such that all the nearest neighbours of a lattice point on one sublattice belong to the 
other sublattice. If we introduce an extra phase factor to the atomic wavefunctions at 
the lattice points on one sublattice, t changes its sign. Since the transformation is 
canonical, the spectrum of the Hamiltonian H’ does not change. Therefore, for sc 
and BCC lattices, the parameter t can be either positive or negative. 

Remark 2. We always assume that the lattice is connected, i.e. given any two sites h 
and k, there exists a path from h to k along which t i j  is never zero. 

For the original proof, one can read reference [l]. Nagaoka exploited heavily 
series expansion in his proof. 

Before proceeding to our proof, we 
and terminologies. 

( a )  Since we are only interested in 
the Hamiltonian in the following form 

H’= t C CLC,, 
U ( d )  

would like to introduce some useful notation 

the case in which U is infinite, we can write 

(3)  

subject to the condition that there can exist at most one electron at each lattice site. 
( b )  Take a lattice site k. Let 

skr = ;( c:T ck 1 + c:J ck T )  

s k z  = f c n k T  - n k J )  
where i =a. It is quite easy to check that 

[ Ska 9 skp 1 = i E e p y S k y .  ( 5 )  
These are the commutation relations satisfied by the spin operators of electron. 
Naturally, we define 

and 

to be the total spin and total spin z-component operators. Furthermore, a little algebra 
shows that 

[ H’, S 2 ]  = 0 and [ H‘, S,] = 0 (7)  
i.e. they are conserved quantities. 

In terms of them, we can write the Hamiltonian H’ in a suitable matrix form. 

alphabetical order. Then we define 

( c )  Following Nagaoka, we introduce a complete set of orthogonal state vectors. 

First, we order the lattice sites in some way. For instance, one can do it in 

(8) 
where cy denotes the spin configuration (al, U * ,  . . . , a(,-l), . . , , a N )  and 10) is 
the vacuum state. It is easy to see that in this state, each site is occupied by one 

I +  + 
*,a = (-1) ClCrlC2Cr*, * * .  , C ; , - l ~ r r , _ , C t , + l ) C r , + l , .  ’ ‘ , C+NCr,IO) 
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electron except the ith site which is empty. Therefore, there exists exactly one hole 
in this state. Letting i and a run over all the possible choices, we obtain the complete 
set of state vectors. These vectors are orthogonal and normalised. 

( d )  Consider the matrix elements ( ~ , m ~ H ’ ~ V l p ) .  If one matrix element ( q h y l H ’ I q k p )  

is non-zero, then 
(i) the configurations y and p must have the same number of spin-up and spin-down 

electrons since H ’  conserves Nt and N , ,  respectively; 
(ii) the sites h and k must be nearest neighbours; furthermore, one of them must 

be unoccupied while double occupation is forbidden; 
(iii) since there exists exactly one hole, only one term of H ’  contributes to 

( ~ ~ y ~ f f ’ ~ ~ k p ) ;  assume that site h is occupied by a up-spin electron and site k is empty; 
then the single contributing term is t c l t c h t ;  

(iv) noticing that 

and the fermion operators satisfy the anticommutation relations, we see that any 
non-zero matrix element 

(* h y  I H ‘ l Y  kp  ) = (* h y  I tc;, c h  T 19 k p )  = - h y  I c h  7 c:? I * k p )  (10) 

is equal to -t  by our definition of state vectors (that is why we give qzm a phase factor 
(-I)#).  

( e )  Given two state vectors q h y  and 9 k p .  If the matrix element 

( Y h y l H ‘ I q k p )  = - t  (11) 

is non-zero, we call them super nearest neighbours. 
(f) Given two state vectors V , m  and YIP which are not super nearest neighbours, 

i.e. (Y,mlH’l’P,p)=O, they are said to be linked if one can find a finite number of 
intermediate state vectors YmX,  *,,a,. . . , Vs7 such that each of qmX), 
(Ymx, *“a), . . . , (Ysr ,  Y,p)}  is a pair of super nearest neighbours. It is equivalent to 
saying that one can find a positive integer M such that 

(%ml(H’)Ml~lp)#  0. (12) 

It is not difficult to see that, for two- or three-dimensional sc, BCC, FCC or HCP 
lattices, any pair of state vectors which have the same number of up-spin and down-spin 
electrons, are linked. In the one-dimensional case, some state vectors are not linked 
even if they have the same Nt and N J .  For example, the following two configurations 
are not linked: 

i T -T I  
Now, we are ready to prove the theorem. 

Proof of Nagaoka’s theorem. For simplicity, we take a two-dimensional simple lattice 
as an example. 

Our strategy of proof is as follows. We first find a lower bound ho for the eigenvalues 
of the Hamiltonian matrix. Then we show that there is a unique (apart from trivial 
( 2 S +  1)-fold spin degeneracy) vector Vo such that H’Yo = h o q 0 ,  i.e. ho is, in fact, the 
lowest eigenvalue of the Hamiltonian. Then we show that the ground-state vector Yo 
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can be explicitly expressed as a linear combination of state vectors Finally, we 
show that q0 has total spin S,,, by applying the operator S 2  to it. 

Let (9 ,mlH'19,D) be the matrix element at the intersection of row ( i a )  and column 
( j p ) .  We write H' into a ( N 2 N - ' )  x ( N 2 N - 1 )  matrix. Since H '  preserves N1. and NL, 
the matrix has the following block form 

(13) 

* . *  H ( 0 ,  O N - 1 )  I H(N-1,O) 
H ( N - 2 ,  1) 

0 
where H ( n , ,  nz )  denotes the submatrix with n ,  up-spin and n, down-spin electrons. 

Take an arbitrary submatrix H (  n , ,  n2 ) .  The elements in each row of it are either 
0 or --t. The non-zero elements are contributed by the super-nearest-neighbour state 
vectors as we have said above. Let z be the number of the nearest neighbours of each 
site in the two-dimensional simple lattice. It is not difficult to see that any state vector 
has also z super nearest neighbours if we impose the periodic boundary condition on 
the lattice. Therefore, in each row of H( n ,  , n 2 ) ,  there are exactly z non-zero elements 
- t .  On the other hand, all the elements on the principal diagonal line must be zero 
because H' only contains hopping terms. These conclusions hold for any partition 

Let A be an eigenvalue of H (  n ,  , n 2 )  and uA be the corresponding eigenvector. Then 
(n1 3 n2). 

A u , = H ( n , ,  n z ) U A .  (14) 
Let 

therefore, the eigenvalues of H (  n ,  , n,) as well as H' are indeed bounded below by -zt. 
Next we take a special vector 
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Obviously, 

H ( n , ,  n,)u,= -ztuo (21) 

since there are exactly z non-zero elements ( - t )  in each row of H ( n , ,  n,). Therefore, 
-zt  is the lowest eigenvalue of H ( n , ,  n 2 )  as well as H'. It is easy to see that uo 
corresponds to the state vector 

in the subspace (n, , n z ) .  In particular, 

'Po(N-l,O)=C(-l)'c:, . . . , c ; I - I , c : ~ ~ ) , .  . . , CLIO). (23) 
I 

In (23), we dropped the index (Y because there is only one spin configuration 
(t, t, . . . , t) in this subspace. Applying the operators S 2  and S, to qo( N - 1 ,  0), we find 

(24) S 2 = $  N - 1 ) (  N + 1 )  = Smax(Smax+ 1 )  

and 

S,  = s,,, = f N, = ;( N - 1 ) . (25) 

On the other hand, one of the lowest eigenvalue states in each subspace ( n ,  , n 2 )  must 
have total spin S,,, since [ H ' ,  S 2 ]  = 0 and [ H ' ,  S,]  = 0. Therefore, one of the ground 
states of H' has the maximum spin. 

Finally, we show that the ground state is non-degenerate. In fact, it is a direct 
corollary of the following theorem. 

Theorem (Perron). Let A be a square matrix with all aij 2 0 .  Let A I , .  . . , A,, be the 
eigenvalues of A and p = max,,,,,, lAuI.  If A is irreducible, i.e. for any pair ( i , j ) ,  there 
is a positive integer M such that {A"}i j  is non-zero, then p is an eigenvalue of A and 
has multiplicity one. 

(One can find a proof of this theorem in reference [5] p 182.) 
Consider H ( n , ,  nz). The negative of it, - H ( n , ,  n 2 )  certainly has only positive 

elements and is irreducible in two- or three-dimensional lattices as we discussed in 
( f  ). The largest eigenvalue of - H ( n ,  , n 2 )  is zt. By Perron's theorem, it has multiplicity 
one. This eigenvalue corresponds to the lowest eigenvalue -zt of H ( n , ,  n 2 )  as well 
as H'. Therefore, the ground state has multiplicity 1, i.e. it is non-degenerate. QED. 

Some remarks are in order. 

Remark 1. In the one-dimensional case, the Hamiltonian matrix is not irreducible. 
Therefore, the ground states may be degenerate. 

Remark 2. The fact that all the non-zero matrix elements of the Hamiltonian are 
negative plays an important role in our proof. In the two-hole case, we could not find 
a set of orthogonal-state vectors such that the signs of the non-zero matrix elements 
are the same. It makes our method useless for this case. At present physicists are 
vigorously debating the two-hole case [ 6 ] .  
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Before finishing this comment, we would like to compare briefly Nagaoka’s fer- 
romagnetic ground state with the ground states of the Hubbard model with finite 
Coulomb repulsion U. 

It is folklore among physicists that the ground states of the Hubbard model would 
be antiferromagnetic rather than ferromagnetic when U is sufficiently large and n = 
N - Ne is small. When U >> t and n << N, we know from the second-order perturbation 
theory that the model may be described by the following effective Hamiltonian [7]: 

where 

Th =-tc 1 ( l - n ~ , - u ) C ~ C , ~ ( l - n , . - u ) + H C  (27) 
( t l )  

and J = 4t2/  U > 0.  The second term of He,  is the well known isotropic spin-: Heisen- 
berg antiferromagnetic Hamiltonian whose ground state has spin 0 [8]. In fact, by 
calculating the spin-wave spectrum to the first-order terms in nt and t 2 /  U, Nagaoka 
also showed that the ferromagnetic state with S = S,,, cannot be the ground state for 
an sc lattice if 

U < N t / a  (28) 
with a = 0.246. Therefore, Nagaoka’s ferromagnetic ground state will eventually be 
destroyed when the thermodynamic limit is taken. We see that infinite potential is 
really crucial for the proof of Nagaoka’s ferromagnetism. 

We would like to thank our referee for his valuable suggestions. 

Note added. After submission of this work, we found an article by Tasaki [9]. He used a quite different 
method and could prove Nagaoka’s theorem for more general cases. 
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